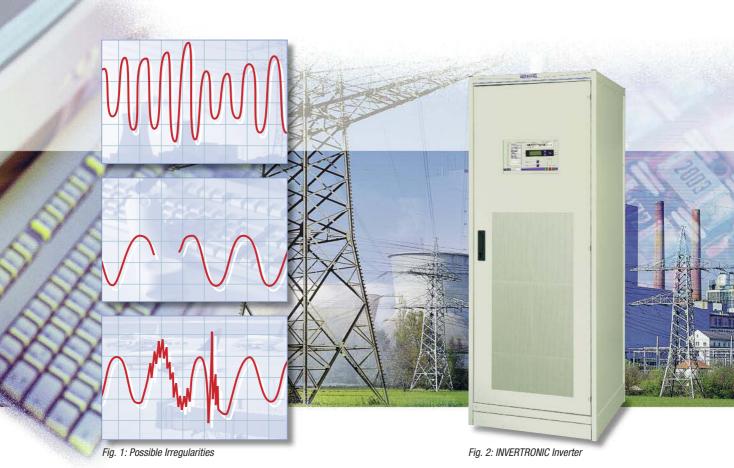


Single and three phase inverters


INVERTRONIC Range

INVERTRONIC disposed for highest security

General

The requirement for power supply reliability is growing, due to the increasing application of information and data carrier systems, text processing, automated production processes and complex data networks.

Irregularities due to loading of the public power supply by major users, peak-time use or by lightning strikes cannot be avoided.

The result is:

Mains voltage breaks, spikes and transients. (Fig. 1)

Static inverters are being installed increasingly for loads who require AC voltages unaffected by interference on the mains e.g.

- Data processing installations
- Process control computers
- Air safety installations
- Signalling, alarm systems
- Telecommunication systems
- Power- and Substations

Design

The exceptional characteristics of this inverter series results in very small dynamic voltage deviations even in the case of one hundred percent load changes.

A combination of a 16-bit micro-controller and the latest power electronic is responsible for controlling and monitoring of all inverter and static switch functions with highest reliability. A static switch and a manual bypass switch are integrated in the unit.

In the front of the cabinet there is a plastic foil keyboard with 6 keys, 2 three coloured and 4 single coloured LED's and a mimic diagram.

INVERTRONIC

multi utilities

Internal manual bypass

Each inverter is equipped with a maintenance bypass with manually operated switch. When operated, the Inverter is completely disconnected from the load. The supply to the load is now directly from the mains via the manual bypass.

Instrumentation

A background-lit 4 x 20 alphanumeric liquid Crystal display (LCD), which is operated by push buttons, is built into the front door. This unit indicates the following specified measured values:

Inverter: • input voltage

- input current
- · output voltage
- · output current of each phase and frequency
- · apparent power
- · real power

Bypass: •

- · input voltage
- · input current of each phase and frequency

An event recorder stores each occurring event (push button operation, switching events and error) with date and time. Up to 1199 entries can be stored.

Fig. 3: INVERTRONIC 50 kVA, interior view

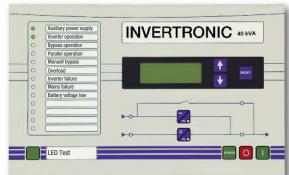
Front Panel

The operation of the inverter is made by a plastic foil keyboard with 6 keys, 2 three coloured and 4 single coloured LED's. There is a mimic diagram on the operating section. The operating condition and any operational disturbances are represented by the multi colour LED's.

There is a 4-line, 80-digit LC display in the operating section for reading information and/or for clear guidance by the menu. Control of the operating section takes place via the display controller, which communicates over the CAN bus with the controller board.

In addition, the most important operating and fault signals are indicated by 13 single LED's.

Parallel Operation


For redundancy or increased output power, up to eight INVERTRONIC units can be connected in parallel, operating in an active load-sharing mode.

Half load parallel operation is achieved using two separate bus bars, connected with a coupling switch. The state of the coupling switch is relayed to the microprocessor, via an auxiliary contact.

Option

For power plant applications where higher than normal fault clearing current is required, it is possible to specify an option for 4 x I nominal system output. Depending on the output power, a bigger cabinet may be required.

Fig. 4: Front Panel INVERTRONIC

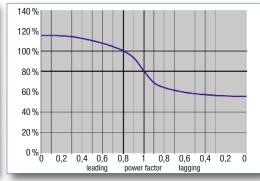


Fig. 5: Available inverter apparent output power depending on power factor

INVERTRONIC all-purpose

Technical Data Single phase inverter INVERTRONIC	C Range -	DIN Typ	e: G 220 E :	230//2	rfg-WEG						
Nominal output power at cos. phi 0,8:	· [kVΔ]	10	20	30	40	50	60	80	100	120	
vormilar output power at 600. pm 0,0.	. [[[]	10		00	1 40	30	00	00	100	120	
Inverter input											
Input voltage:	[V]					220		B. 15			
Input voltage range:	[%]					· 15 to + 2	0	lane.	2.00	11 15	
Permitted overlaid AC:	[%]					< 5 eff.	10.00				
AC current feedback on DC input:	[%]	< 10 eff.									
Switch on current:						< I-Nom.					
Input current at cos phi 0,8	FA3	40	00	440	450	400	000	007	000	400	
and nominal input voltage:	[A]	40	80	118	156	196	233	307	383	460	
DC power at battery operation:	[kW]	8,8	17,6	26	34,4	43	51,1	67,4	84,2	101	
Efficiency at nominal load:	[%]	91	91	92	93	93	94	95	95	95	
Inverter output	D.O.		18		-	1 /NL 000 D	_		- 1		
Output voltage:	[V]		11		1300	1/N 230 P	<u> </u>	4	0.01		
Adjustment range of output voltage:	[%]					± 5					
Voltage tolerance:											
- static						± 1%					
- dynamic		± 4% for 100% load change									
Regulation time:	[msec]	N				≤ 10		1600			
Nominal output current each phase:	[A]	43	86	130	173	217	260	347	434	521	
Non-linear load:		Crestfaktor ≤ 3									
Motor load:		100% permitted (note inrush current)							1		
Overload behaviour:		50% for 60 sec.									
9		25% for 10 min.									
						% for 20 n					
Short-circuit behaviour:						ort circuit p					
Short circuit current:						-nom for 3					
Output frequency:	[Hz]			50 (60	$) \pm 0,1\% q$			ronised			
Synchronisation range:	[Hz]				5	$0(60) \pm 3$	%				
Wave form:						Sine wave					
Distortion factor (acc. EN 62040):	[%]	≤ 0,5 with linear load									
	[70]	≤ 5 with non linear load									
Static bypass											
Overload behaviour:					150)% for 10	min.				
						% for 100 i					
Transfer time:											
- at inverter failure	[msec]				< 1	(uninterrup	tible)				
- at overload or manual activation	[msec]	< 1 (uninterruptible)									
Dimensions:											
	[mm]	2000	(2200*)			2000	(2200*)			2000 (220)	
- Height - Width	[mm]	2000 (2200*) 2000 (2200*) 2 800 800				2000 (2200					
	[mm]									1600 800	
- Depth	[mm]	600 800 (* 2200 mm height is a					800				

(* 2200 mm height is also possible)

INVERTRONIC all-purpose

Technical Data												
Three Phase Inverter INVERTRONIC	Range -	DIN Type	: G 220 D	400//2	rfg-WDG							
Nominal output power at cos. phi 0,8:	[kVA]	10	20	30	40	50	60	80	100	120	160	200
a. carpar porto: ar coor p c,c.	[]							1 33				
nverter input												
nput voltage:	[V]						220			-///		
nput voltage range:	[%]	C All		15"L =1		//	15 to + 2	0		110		
Permitted overlaid AC:	[%]		1000				< 5 eff.	1.11.11.11	9058			
AC current feedback on DC input:	[%]	176		- 1			< 5 eff.		167.5			
Switch on current:	100	- mil	-8		Kella.		< I-Nom.					
nput current at cos phi 0,8	[A]	40	79	116	154	193	233	307	383	460	612	765
and nominal input voltage:		TO	13	110	104	133	200		303	400	012	700
OC power at battery operation:	[kW]	8,7	17,4	25,5	33,9	42,5	51,1	67,4	84,2	101	135	169
Efficiency at nominal load:	[%]	92	92	94	94	94	95	95	95	95	95	95
nvortor output										Mir ison		
nverter output Output voltage:	[V]		1			400/	230 2 5	h., N, PE	-56	AH	4 5 =	
Adjustment range of output voltage:	[%]	The state of the s	1			400/	230 3-p ± 5	II., IN, PE	ABB			
	[%]						± 0					
/oltage tolerance: - static							± 1%					
- dynamic	B 2-1					1 40/ for		d change				
	10/67	± 4% for 100% load change ± 2% at 100% of centre load										
- asymmetric load	[mana]		-			± 2% at		entre toad	-			
Regulation time:	[msec]	144	00.0	40.0	F7.0	70.0	≤ 10	115	144	170	000	000
lominal output current each phase:	[A]	14,4	28,8	43,3	57,8	72,2	86,7 estfaktor <	115	144	172	230	288
Ion-linear load:	The first				10		750					
Motor load:	12-17				10	_		nrush curre	ent)	1000		
Overload behaviour:	50 % for 60 sec. 25 % for 10 min.											
							% for 20 n					
Short-circuit behaviour:							ort circuit p					
Short circuit current:					9			om for 3 se	r ·			
onort circuit current.								n for 3 sec.				
Dutput frequency:	[Hz]							ains synch				
Synchronisation range:	[Hz]				00 (00		$0 (60) \pm 3$		onioca			
Nave form:	[112]						Sine wave					
Distortion factor (acc. EN 62040):		≤ 1 with linear load										
Distortion ractor (acc. LN 02040).	[%]	≤ 1 with non linear load ≤ 5 with non linear load										
Static bypass												
Overload behaviour:)% for 10 i					
						1000	% for 100	msec.				
Transfer time:												
- at inverter failure	[msec]						(uninterrup					
- at overload or manual activation	[msec]					<1	(uninterrup	tible)				
Abmessungen:												
- Height	[mm]	2000 /	2200*1			n		ı*\			20	חח
- Height - Width	[mm]	2000 (2200*) 2000 (2200*) 2200										
	[mm]	800 800 600 800 800 800										
- Depth	[mm]	Ю	JU				800				8	UU

INVERTRONIC Generel data

Radio interference:		In accordance EN 50091-2
Transducer:		1 x 0 respectively 4 to 20 mA free programmble
Relay outputs:		6 x volt free change over contacts
Interfaces:		1 x RS232 and RS485, each with MODBus protocol
Permitted power factor:		0,0 ind 0,0 cap.,
		for deviations of cos phi 0,8 ind.
- 100		power reduction is needed only via 1 to the cap. range (see figure 5)
Noise level with 1 m distance:	[dB(A)]	app. 65
Cooling:		
10 and 20 kVA inverter		convection colled
30 to 200 kVA inverter	J.A.	Forced cooling with redundant, speed controlled fans located in air inlet
Permitted ambient temp.:	[°C]	0 to + 40
Permitted climatic data:		temperate climate
Humidity class:	a hara	Class F, DIN 40040
Permitted installation height	[m]	1000 above sea level
at nominal load:	[iii]	1000 above sea level
Protection degree:		IP 20 in accordance DIN 40050
Painting:		RAL 7035, structural paint
Other options e.g.:		Profibus DP interface connected to RS232,
		Bypass transformer (additional cabinet),
		higher protection IP,
		6 additional alarm relay contacts (free programable),
	77	additional RS232 and RS485 interfaces
	100	(additional options on request)

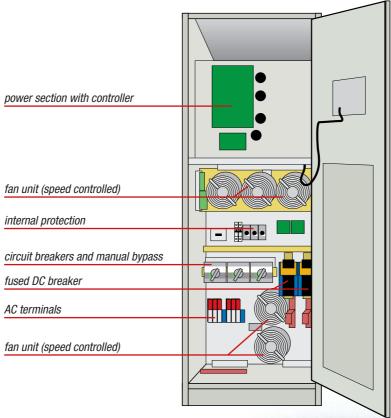


Fig. 6: INVERTRONIC 50 kVA, internal view

INVERTRONIC with static bypass an uninterrupptible power supply

Function

The static inverter not only has the task of supplying the connected consumers continuously and without interruption, but beyond that to also provide a clear improvement of the voltage and frequency quality in relation to the normal system. In normal operation the consumer is supplied by the inverter and output transformer route.

Inverter

D-ABVP

The inverter power block changes DC voltage into a 3-phase sinusoidal AC voltage with constant amplitude and stable frequency. The output voltage is independent of line disturbances or power failures.

The unit works with an IGBT inverter bridge with pulse width modulation having a high efficiency in the partial load range as well as achieving a low distortion factor at non linear load.

In the event of mains interruption or failure, the battery connected to the DC input is brought in automatically and without interruption to supply current. If the battery becomes discharged this is reported. If the battery discharge limit is exceeded, the installation automatically turns off and a warning is given shortly before the discharged voltage limit is reached.

Automatic change-over of the load to the bypass mains or a suitable spare installation occurs if the supply from the inverter falls outside the preset tolerances.

Static Bypass

The static bypass consists of a semiconductor switch in the bypass circuit. In the case of an appropriate deviation of the output voltage from the desired values, it switches the connected load automatically and without interruption to the mains.

The static bypass component of the installation facilitates uninterrupted change-over to direct mains supply (bypass mains), keeping the specified tolerances. The change-over can be initiated manually or automatically by a control signal. The μP monitoring is autonomous and prevents incorrect operation of the installation and any illogical switching functions of the static bypass. Thus, for example, an uninterrupted change-over, whether automatic or manual, is only possible when the voltage, frequency and phase conditions of the inverter are synchronised with the bypass mains. Mains frequency deviations, which lie outside the preset tolerances cause blocking of the change-over, or if the inverter fails, a change-over with an interruption.

A change back can only occur to a functioning inverter, and is in everycase uninterrupted even if the mains should fail on a test change-over.

The static bypass has an overload capability of 150 % for 10 min. and 1000 % for 100 ms.

After the presence of an overload or a short-circuit, it automatically resets the load to the inverter, if normal operation is possible.

The static bypass consists of a microprocessor-controlled anti parallel thyristor block. It can be activated manually with a push button, in order to test the change-over. The change-over from inverter to the mains and back takes place in a synchronised operation without a break.

784335.07 GB 04/2010 paus Design & Medien, Bocholt Subject to alterations. Printed on chlorine free paper

www.benning.de

BENNING worldwide

Austria

Benning GmbH Elektrotechnik und Elektronik Eduard-Klinger-Str. 9 A-3423 St. Andrä-Wördern Tel. 0 22 42 / 3 24 16-0 Fax 0 22 42 / 3 24 23 E-Mail: info@benning.at

Belarus

IOOO BENNING Belarus ul. Derzinskogo, 50 BY-224030, Brest Tel. 0162 / 22 07 21 Fax 0162 / 22 07 21 E-Mail: info@benning.brest.by

Belgium

Benning Belgium Power Electronics Z. 2 Essenestraat 16 B-1740 Ternat Tel. 02 / 58 287 85 Fax 02 / 58 287 69 E-Mail: info@benning.be

Croatia

Benning Zagreb d.o.o. Trnjanska 61 HR-10000 Zagreb Tel. 1 / 63 12 280 Fax 1 / 63 12 289 E-Mail: info@benning.hr

Czech Republic

Benning CR s.r.o. Zahradní ul. 894 CZ-293 06 Kosmonosy (Mladá Boleslav) Tel. 3 26 72 10 03 Fax 3 26 72 25 33 E-Mail: benning@benning.cz

France

Benning Conversion d'énergie 43, avenue Winston Churchill B.P. 418 F-27404 Louviers Cedex Tél. 0 / 2.32.25.23.94 Fax 0 / 2.32.25.08.64 E-Mail: info@benning.fr

Germany

Benning Elektrotechnik und Elektronik GmbH & Co.KG Factory I: Münsterstr. 135-137 Factory II: Robert-Bosch-Str. 20 D-46397 Bocholt Tel. 0 28 71/ 93-0 Fax 0 28 71/ 9 32 97 E-Mail: info@benning.de

Great-Britain

Benning Power Electronics (UK) Ltd.
Oakley House
Hogwood Lane
Finchampstead
GB-Berkshire
RG 40 4QW
Tel. 0118 9731506
Fax 0118 9731508
E-Mail: info@benninguk.com

Hungary

Benning Kft.
Power Electronics
Rákóczi út 145
H-2541 Lábatlan
Tel. 033 / 50 76 00
Fax 033 / 50 76 01
E-Mail: benning@vnet.hu

Italy

Benning Conversione di Energia S.r.L Via 2 Giugno 1946, 8/B I-40033 Casalecchio di Reno (B0) Tel. 0 51 / 75 88 00 Fax 0 51 / 61 67 655 E-Mail: info@benningitalia.com

Netherlands

Benning NL Power Electronics Peppelkade 42 NL-3992 AK Houten Tel. 0 30 / 6 34 60 10 Fax 0 30 / 6 34 60 20 E-Mail: info@benning.nl

Poland

Benning Power Electronics Sp. z o.o. Korczunkowa 30 PL-05-503 Glosków Tel. 0 22 / 7 57 84 53 / 7 57 36 68-70 Fax 0 22 / 7 57 84 52 E-Mail: biuro@benning.biz

P. R. China

Benning Power Electronics (Beijing) Co., Ltd.
Tongzhou Industrial Development Zone
1-B BeiEr Street
CN-101113 Beijing
Tel. 010 61508588
Fax 010 61506200
E-Mail: info@benning.cn

Russian Federation

000 Benning Power Electronics Moscow region, Domodedovskiy district, Domodedovo, Severny zone, Tel. (495) 967 68 50 Fax (495) 967 68 51 E-Mail: benning@benning.ru

Slovakia

Benning Slovensko, s.r.o. Kukuričná 17 SK-83103 Bratislava Tel. 02 / 44459942 Fax 02 / 44455005 E-Mail: benning@benning.sk

South America

Benning Office South America Lavalle 637 AR-1876 Bernal, Buenos Aires Argentina Tel. 54/ 911 5498 2515 E-Mail: info-argentina@benning.es

South East Asia

Benning Power Electronics Pte Ltd 85, Defu Lane 10 #05-00 SGP-Singapore 539218 Tel. (65) 6844 3133 Fax (65) 6844 3279 E-Mail: sales@benning.com.sg

Sweden

Benning Sweden AB Box 990, Hovslagarev. 3B S-19129 Sollentuna Tel. 08 / 6239500 Fax 08 / 969772 E-Mail: power@benning.se

Switzerland

Benning Power Electronics GmbH Industriestrasse 6 CH-8305 Dietlikon Tel. 044 / 8057575 Fax 044 / 8057580 E-Mail: info@benning.ch

Spai

Benning Conversión de Energía S.A. C/Pico de Santa Catalina 2 Pol. Ind. Los Linares E-28970 Humanes, Madrid Tel. 91/6048110 Fax 91/6048402 E-Mail: benning@benning.es

Ukraine

Benning Power Electronics 3 Sim'yi Sosninykh str. UA-03148 Kyiv Tel. 044 / 501 40 45 Fax 044 / 273 57 49 E-Mail: info@benning.ua

J.S.A.

Benning Power Electronics, Inc. 11120 Grader Street USA-Dallas, TX 75238 Tel. 214 5531444 Fax 214 5531355 E-Mail: sales@benning.us ISO 9001

